Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine poikilotherm, Crassostrea virginica Gmelin (Bivalvia: Ostreidae).
نویسنده
چکیده
Marine intertidal mollusks, such as oysters, are exposed to multiple stressors in estuaries, including varying environmental temperature and levels of trace metals, which may interactively affect their physiology. In order to understand the combined effects of cadmium and elevated temperature on mitochondrial bioenergetics of marine mollusks, respiration rates and mitochondrial volume changes were studied in response to different cadmium levels (0-1000 micromol l(-1)) and temperatures (15, 25 and 35 degrees C) in isolated mitochondria from the eastern oyster Crassostrea virginica acclimated at 15 degrees C. It was found that both cadmium and temperature significantly affect mitochondrial function in oysters. Elevated temperature had a rate-enhancing effect on state 3 (ADP-stimulated) and states 4 and 4+ (representative of proton leak) respiration, and the rate of temperature-dependent increase was higher for states 4 and 4+ than for state 3 respiration. Exposure of oyster mitochondria to 35 degrees C resulted in a decreased respiratory control and phosphorylation efficiency (P/O ratio) compared to that of the acclimation temperature (15 degrees C), while an intermediate temperature (25 degrees C) had no effect. Cadmium exposure did not lead to a significant volume change in oyster mitochondria in vitro. Low levels of cadmium (1-5 micromol l(-1)) stimulated the rate of proton leak in oyster mitochondria, while not affecting ADP-stimulated state 3 respiration. In contrast, higher cadmium levels (10-50 micromol l(-1)) had little or no effect on proton leak, but significantly inhibited state 3 respiration by 40-80% of the control rates. Elevated temperature increased sensitivity of oyster mitochondria to cadmium leading to an early inhibition of ADP-stimulated respiration and an onset of complete mitochondrial uncoupling at progressively lower cadmium concentrations with increasing temperature. Enhancement of cadmium effects by elevated temperatures suggests that oyster populations subjected to elevated temperatures due to seasonal warming or global climate change may become more susceptible to trace metal pollution, and vice versa.
منابع مشابه
Temperature-dependent effects of cadmium and purine nucleotides on mitochondrial aconitase from a marine ectotherm, Crassostrea virginica: a role of temperature in oxidative stress and allosteric enzyme regulation.
Temperature and heavy metals such as cadmium (Cd) are important environmental stressors that can strongly affect mitochondrial function of marine poikilotherms. In this study, we investigated the combined effects of temperature (20 degrees C and 30 degrees C) and Cd stress on production of reactive oxygen species (ROS) and oxidative stress in a marine poikilotherm Crassostrea virginica (the eas...
متن کاملTemperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters.
Combined effects of temperature and a toxic metal, cadmium (Cd), on energy metabolism were studied in a model marine bivalve, the eastern oyster Crassostrea virginica, acclimated at 20, 24 and 28 degrees C and exposed to 50microgl(-1) of Cd. Both increasing temperature and Cd exposure led to a rise in standard metabolic rates, and combined stressors appeared to override the capability for aerob...
متن کاملEffects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation.
Intertidal bivalves are commonly exposed to multiple stressors including periodic hypoxia, temperature fluctuations and pollution, which can strongly affect energy metabolism. We used top-down control and elasticity analyses to determine the interactive effects of intermittent hypoxia, cadmium (Cd) exposure and acute temperature stress on mitochondria of the eastern oyster Crassostrea virginica...
متن کاملCadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).
Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can ...
متن کاملEffects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves
Rising CO(2) concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO(2) concentrations (∼250, 390,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 15 شماره
صفحات -
تاریخ انتشار 2004